Large Displacement Optical Flow Paper by Thomas Brox, Christopher Bregler and Jitendra Malik Presented at CVPR 2009 # Outline Overview of the method Region matching Calculating the flow Results ## Overview #### Comparison of the two main ways of estimating optical flow: Lucas-Kanade Optical Flow Obtain very dense, accurate flow fields However downsampling can smooth too much and cause a loss of information. This favors the movements of larger objects over smaller ones #### **Descriptor matching** We can track the salient parts of the image However, structure is lost and we're at the mercy of outliers. A sparse flow field is created and interpolating the results leads to inaccurate results overall ### Overview #### Their method: Use a directed variational optical flow: Do a hierarchical segmentation on the image After segmenting the image, calculate the flow taking into account the information received from the segmentation #### The benefits of such an approach: Regions in the segmented image are likely to coincide with objects We obtain a dense field instead of interpolating a sparse field The whole image is covered Use of multiple matching hypotheses takes care of outliers (more details later) # Region Matching #### Compute the regions: Uses a boundary detector: Takes into account texture Creates a hierarchy in the boundaries detected Boundaries are thus more likely to correspond to objects or parts of objects #### Region descriptors: To each region they fit two descriptors: One that takes into account orientation (16 orientation histograms) The other to take into account color (mean RGB color of the 16 sub-parts) Correspondences between regions is thus done by taking the Euclidean distances of both descriptors Correspondences are then thresholded according to given parameters to exclude false matches # Region Matching #### Refinement of the descriptor matching: Despite thresholding the descriptors, outliers still remain This is due to the small size of these regions which makes the region hard to describe Need to create a confidence measure for potential correspondences They take into account the actual distance between two patches as well as the deformation Note: instead of computing the confidence measure for each pair, the algorithm chooses the 10 nearest neighbors from the previous step ## Flow Calculation #### The bulk of the work has been done: The descriptor matching and its refinement is the main focus of the paper The flow is calculated by minimizing equation (5) This equation takes into account the data constraints and correspondence calculations shown in the previous section ## Results The results are an improvement over previous techniques: Interpolated region correspondences Coarse-to-fine Method from [4] Proposed method Two frames compared ## Results The process has trouble with repeating backgrounds Some outliers still remain Some very fast moving objects are still overlooked